
mn^^i^iip u ifii^ww^w^n^ -^^ww^w^^w^ '■ "i "^il

/"

AD-771 435

A USER'S GUIDE TO THE MACRO CONTROL LANGUAGE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PREPARED FOR

ADVANCED RESEARCH PROJECTS AGENCY

OFFICE OF NAVAL RESEARCH

DECEMBER 1973

DISTRIBUTED BY:

urn
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

mam ina^i ii

1 - ■ "
1 —» «

BIBLIOGRAPHIC DATA ' K»po«1 No.

SHEET MAC TM- 36
2. 3. Ki i ipHHi' . Ac t i -,.M..II N,.

4. I"i tnj '»ul I n!!

A User's Guide to the Macro Control Language

5- R< puii i'.tt. ; Issued

December 1973
6.

7. \ • •

Steven P. Geiger
8. 1 Vrf.Tfiitfv (>r>*.ilt!/.it ion l<< pt.

v'- MAC 'I'M- 36
9. 1'i rl..M.iin. !'i,Miu/.it i.'[i N.n;,. .in,l .■K.I.in ..

PROJECT MAC; MASSACHUSETTS INSTITUTE OF TECHNOLOGY:

545 Technology Square, Cambridge, Massachusetts Ü21J9

10. Projt i l.l, tork Unit So.

11. 1 untra t < ii.itu No.

N00014-70-A-0J62-0006
12. s|"ii ..inru' iVi'jni/atittn Name irui VMrcss

Oftii. ■ o! Naval Research
Department of the Navy
Information Systems Program
Arlington, Va 22217

13. 1 > p> oi Id p.iri it Period
i ..vi t. .1: interim
Scientific Report

14.

15. SuppU'im iit.it ^ X.tt« .

Engineering Robotics Group

16. \l.-,T.l, Is

This memo describes the use of new language for the control of Physical

processes. Programs written in Macro Control Language are subjected to a translator/

scheduler where they undergo a traditional compilation as well as automatic

processor scheduling among the various processes which are controlled. The memo

explains the syntax and semantics of the Macro Control Language. It also gives

step-by-step instructions for writing programs and for running them on the M.I.T.

Electrical Engineering Department's PDP-11/45 DELPHI system.

17. Iv . U.irl-. and Dorumeni Analysis. 17a. Deicriptor*

Rep'od'jce'J by

NATIONAL T£CHNICAL
17b. ii.. ,a or,„i,„K.a rvr». INFORMATION SERVICE

ngfald VA J3151

17c. i UNA j | | „MA,,,,„p

18. V. .itl ability Si ati mini

Unlinüted Distribution

19. •<. umy (lasi (1 hiü
Ri p..ri)

1 \(l.A^slMIl,

21. \... oi Rann

/ v/
Write Project MAC Publi(ations

20. Sei univ ' l.iss (\ his
I'.ir

1 N< I.ASSIFII n

22. I'M. v

I ills l-:)l<Ni MAY BE RKPROOIK ID COMMDC ■4952-P7.'

 - - --

^^^^^mw^^9^ mm

TECHNICAL MEMORANDUM 36

A USER'S GUIDE TO THE MACRO CONTROL LANGUAGE

Steven P. Geiger

December 1973

This research was supported by the Advanoed
Research Projects agency of the Department
ot" Defense under ARPA Order No. 2095 which
was monitored by ONR Contract No. N00014-
70-A-0362-0006.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139

M

mm IJMtfcfcrifaili II ■ ■iiiiil^r^flrÜrfn^aaM^IMnrl«

-1-

1. INTRODUCTION'

Although there currently exist many lamjuayes tiaed for

process-control, they are restricted to ipccial-purpoM

art)lications. Tiie Macro Control Lanyuaqe is the base o£ a new

language approach which combines tne advantages of OOffipilation

fron a higlier-level language with the autonatic echoduling of a

pre-programmed real-time system. This language iias been

implemented on the M.i.7. Electrical Engineering Separtraent*8

PDP-11/45 DSLPHI system, located in Duilding 31-473. Tho

primitives of tne language are structured as macros for the

computer's assembly language.

The purpose of this guide is to explain tne syntax and

semantics of the statements in the Macro Control Language. The

guide assumes that the reader is familiar with the assembly

language for the PDP-11. Although tnis guide gives step-by-step

ins1- jctions on how to write and run Macro Control Language

p. ^grams, it assumes that the reader is familiar with certain

aspects of the DELPHI system. In particular, it is assumed that

tiie reader can log in and out of the system, knows how to use the

editor, and i> somewhat familiar with the "n" sub-system of

DELPHI (see DELPHI User's Manual).

KflHB *"■*"----- J-:--- ■■

I. mm\\ ■• p«...i-."i iHnl_.>«iJ i.^.. »mi 9 m,Wmimm miw JI ■«■ UWRIW I - ■■■■ —. .. n-ai .

-2-

2. ÜAL'IOIJS

The purpose of this section is to consider "daemons",

explain what they are ard how to use them.

2.1) Introduction to Daemons

The central concept of this lan^a.je is the "daenon" - i ,

a user-specifieo process exhibiting so™e -contineity". A ^J

t. conposed of two parts, each with its own user-Ueciared neasure

of "continues performance". The first part is sone condiUon to

be monitored. « tHis coniJition is .^^ ^ ^ ^^ ^

of the daemon will take some course of action. Por examnle. in

movxn, a robot arm whose hand I. holding a glass of water, it is

desirable to .ecp the hand's angle with the horizontal. .. egual

to zero so as to avoid spilUng the water. To accompUsh this, a

daemon would be created to monitor the angle .. and to take

appropriate action if the glass begins to tilt. In LngUsh, the

-dy of tne daemon might read as follows: ••HocognUe within 25

mrlliseconds if l8|>0.i; and uithin „„ ^„^„„^ ^^ ^

oorrectiye action of applying procedure P to the actuator

controlling the robot's hand.» here for »ol. . i« nere. ror angle monitoring, the

measure of continuity is 25 msec - i-haf I. ,
Z3 msec that is, due to the dynamics

of the robot arm, recognition of the angle error within 25 msec

of its actual occurrence will produce essentially the same

results as if the angle were monitored continuously. xf a more

sluggish arm were used, the daemon could monitor iess frequently

-3-

than every 25 msec and still have the same deqree of

"continuity". Similar comments can be made about the declared

time of 100 msec for corrective action at the actuator end of the

system.

Thus, the daemon is the heart of a user-defined control

loop. The programmer can specify as many daemons as lie wishes,

and in any order. To his eyes, all daemons run simultaneously,

independent of the imolementation details of the language.

2.2) Creating Daemons

A daemon is created with the following statement:

DAEMON des t,cond,expr,rec-wi thin,serv-wi thin

dest - specifies tne
or "name" of
daemon as spe
daemon's name
destination s
assembler des
"R5" specific
register 5; "
put into the

destination for the uniqae address
the daemon. After creating the
cified, the system will put the
into this destination. This

nould be specified using the normal
tination addressing modes. That is,
s that the name will be put into
DLOC" specifies that the name will be
location "DLOC".

cond - specifies the address of the code for the daemon
condition to be monitored. The format for a
daemon condition will be discussed later. Normal
assembler source addressing modes are to be used
for this argument. That is, "R5" specifies that
the condition address is contained in register 5;
"DCOND" specifies that the address is contained in
location "DCOND"; and "IDCOND" specifies that
"DCOND" is the address of the condition.

expr - specifies the address of the code to be executed
when the daemon condition is "true". This code,
called the daemon's "expression", will be
discussed in Section 2.4. Like cond, expr should

OB^MMMMUMI mm

^^i^mmmmim

-4-

be specified using the assembler's source
addressing modes.

rec-within - specifies the measure of continuity for th-j
daemon condition. This measure is referred to as
the "recognize-within" time and will bo discus.sod
in Section 2.5. The "recognize-within" should bo
specified using the TIME FORMAT discussed in
Section 3.

sorv-within - specifies the measure of continuity for the
daemon expression. Tnis measure is referred to as
the "service-within" time and will ho discussed in
Section 2.6. Like the recognize-within time, the
"service-within" should be specified in TTIL
FORMAT.

2.3) Daemon Conditions

It is up to the daemon condition to perform the appropriate

monitoring tasks, and to reply either "true", the daemon

expression should be run, or "false", the daemon expression

should not be run. There is no special entry format for the

actual code of the condition. The user is free to change

registers 0 thru 5 at will - they need not be saved upon entry or

restored upon exit from the condition. The use of register 6

(the stack pointer) will be discussed in the section on STACKS.

The condition can execute any Macro Control Language statement

except START, WAIT, or ENDEXPR. To exit from the condition, the

EIJDCOND statement should be used. The format for this statement

is simply:

ENDCONU

uimmmm ti-KTMi nur —'

"-■-"»■ i wi i i ■ iimi 11 .H! ■

-5-

At this time, the system will test register 0 to determine its

action. If RO is positive, this means the condition has returned

"true". If RO is negative, this means the condition has returned

"false". Whenever a condition has returned "false", it will be

rescheduled to run at a later time.

Users should obey the discipline just outlined. They should

not attempt to execute the daemon expression themselves. They

should not attempt to re-execute the condition by branching to

its beginning. It is desirable that all uaemon conditions be

short and take little time to execute. Any "work" that takes an

apprecia ie amount of time should be left for the daemon

expression.

2.4) üaemon Expressions

The expression is the "workhorse" of the daemon. It is here

where "corrective" actions are performed before control is again

returned to the daemon condition. Like the condition, the

expression has no special entry format and registers 0 thru 5 may

be used freely. The STACK restrictions that apply to conditions

also apply to expressions. The only Macro Control Language

statements that expressions may not execute arc START and

LNDCOND. Although the expression re turns no truth value, its

exit format is similar to the condition. That is, to terminate

an expression's execution, use the ENDEXPR statement. The format

^MMaaaii

-6-

for this statement is simply:

ENDEXPR

2«5) Recognize-within

The recognize-within time specifies the measure of

continuity for the daemon condition. Very simply, it directs tne

system to recognize the occurrence of the "true" condition within

the specified time after the condition actually becomes true.

Practically, this time specifies the frequency of the condition

execution. For this specification tu be meaningful, it is

necessary that the time be larger than the actual code execution

time of the daemon condition. If the user does not wish to

declare any specific amount of ^ime, he may instruct the system

to use a default for the recognize-within time. Default is

indicated by specifying a recognize-within time of "zero". The

length of default recognize-within time varies dynamically,

depending on the number of daemons that neeu their concitions

evaluated. The larger the number of such daemons, the larger the

default time.

2.6) Service-within

The service-within time specifies the measure of continuity

— -

-7-

for the daemon expression. That is, it says to fully Service (ür

execute) tiw daemon expression within the specified anount of

time after the recognition of a "true" condition. In a .sense,

this tune can be used to specify how "important" a particular

expression is, with respect to other daemon egressions. This

servico-withxn time should be larger than the actual coae

execution time of the daemon expression. The user can soecify a

default for the service-within time in the same manner as lor the

recognize-within. In this case, tu length of the default tim

depends on tne number of aaemons that need tneir expressions

execute«.'

2.7) Controls over Daemons

As created with the MfeMOM statement, a daemon is an idle

process which will do nothing until "activated". It is said to

be in a "deactivated" state. The usefulness in having control

over aaemon "activation" can be seen with the earlier example of

a daemon keeping a robot's hanu level. Suppose one wished to

direct the robot to pour the water out of its glass. All

attempts would be in vain unless there were some way to

"deactivate" the daemon that keeps the hand level. It would be

desirable to keep the hand-leveling daemon in a "library" of

daemons to be -activated" when wanted, and "ueactivaced" when no

longer needed. Thus, all daemons in the Macro Control Language

-8-

ire created in the "deactivated" state.

To activate a daemon, the followimj statement should bo

used:

ACTIVATE name

name - specifies which daenon should be "activated"
This argument uses the assembler's source
addressing modes to reference the value returnc
through the "dest" argument of the DAEriON
statement.

The action taken by the ACTIVATE statement depends on tne state

or "status" of the specified daemon. If the uaenon is

"deactivated" and lule (for example, after creation), its staV s

becomes "activated" and its condition is scnedul.u to execute

immadiately. If the daemon is already "activated", then the

ACTIVATE statement performs no useful work. If the daemon has

been "deactivatea" but has not yet fimsnea executing its code,

the statement will set the status to "activated", but will not

interrupt the current execution of the daemon; the daemon will

proceed as if it never hac been "deactivated" in the first place.

To "deactivate" a daemon, the following statement should be

used:

DEACTIVATE name

name - specifies which daemon should be "deactivated"
This argument has the same format as in the
ACTIVATE statement.

The action taken by the DEACTIVATE statement is quite simple.

Tnis statement sets the "status" of the daemon to "deactivateu".

mm

— n_

If the specified daemon were already "deactivated", this

statement performs no useful action. If the daemon were

executirKj either its condition or expression, this execution

proceeds uninterrupted. However, both the BNÜCONO anci CWLXPH

statements check the daemon's "status". If eitner statement

discovers that the daemon has been "doactivatec", it will return

the daemon to its oriyinal "idle" state.

2. >i) Jaemon Status

In the previous section it was mentionuu that uaemons have a

"status", and that tnis "status" can be "activateu",

"deactivated", or "idle". The status of a daemon can be accessed

by a user since it may influence the control stratetjy to be

followed. Thus the followinu statement is providec:

STATUS name,dest

name - specifies which daemon the user is interested in.
This argument has the same format as in the
ACTIVATE statement.

dest - specifies the uestination for the value of the
daemon's current status. The format of this
argument is similar to that of the "dest" argument
of the DAEMON statement.

The value returned by the STATUS statement is coded in bits. Bit

ü (the lowest order bit) beimj I/o specifies that the daemon is

activated/deactivated. If bit 1 is set, the daemon's condition

is scheduled to run. If bit 2 is set, the daemon's expression is

MHMUM

-10-

scneduled to run. If the user doesn't wish to test individual

bits, the following table can be used to understand tne daemon's

status:

value meaning
HP-- deactivated and idle, as after creation
1 - impossible, system error
2 - the daemon's condition is scheduled to run.

However, after its execution, the daemon will return
to the "idle" state since it is deactivated.

3 - the daemon is activated and its condition is
scheduled to run normally.

4 - the daemon's expression is scheüuled to run.
However, after its execution, the daemon will return
to the "idle" state since it is ueactivated.

5 - the daemon is activated and its expression is
scheduled to run normally.

mm

-11-

3. TIME - A DISCUSSIOH

A few statements in the Macro Control Language use the

concept of "time". The purpose of this section is to explain the

representation of time to the user, explain how to access the

tine-of-day, and to describe the TIME POKMAT ami its various

options.

-•1J Internal Kcpresentation of rime

The Macro Control Language works with 10 microseconds as its

basic unit of time. Two consecutive words inside the system

represent the current time-of-day. The first word (lower

address) contains the high order nits of the time-of-day, whxle

the second word contains the lower order bits of the time-of-day.

The representation is a 32-bit unsigned number. This two word

size accomodatei approximately 12 hours of real time. The

time-of-day is initialised to r,oro and begins counting with the

execution of the START statement (see Section 6.2). It is

assumed that no user will be running for more than 12 hours at a

time. If this should happen, an errtr message will notify the

user that a "TIME OVERPLOW" has occurred.

J.2) Acceasinq Time

During the course of his program's execution, the user may

mm

-12-

wish to access the current timc-of-day kept by tiic syritoii. Such

an access of tirae would be useful for timimj events external to

the computer. For example, consider a researcher wno wishes to

determine the tirae required for a human subject tu blink In

response to a flash of light. Such a calculation is trivial if

the computer can record the time at which it flashed the light

and tne time at which Jie subject blinked. Thus, the followin«.j

statement is provided to give the user a copy of the current two

word time-of-day:

TIME dest

dest - specifies where the two words of the time-of-day
are to be placed. The addressing modes are
restricted to the following subset: "Un" specifies
that the time-of-day is to be put into registers
Rn and Rn+1; "X(Rn)" specifies that the
tirae-oC-day is to be put into locations X(Rn) and
X+2(Kn.; finair "'DLOC" specifies that the
time-of-üay is to be put into locations DLOC and
ÜL0C+2.

In all cases, the first word (lower address) will contain the

higher order bits of the tiue-of-day. In the second option for

dest, "X" may be blank. The user is reminded to program carries

if doing arithmetic operations on the time-of-day, and to use the

unsigned conditional branches after any comparisons of "times".

3.3 Tirib FORMAT

Certain statements, e.g. DALiMON, require the use of

-13-

arcjuments in "TIME FORMAT". Since the user must specify twu

words worth of tine to the system, th^ TIME FORMAT was developed

to aid him. There are three acceptable TIME FORMATS which can be

used. In the first two formats, the user must specify two word!

of "time" data. In the last format, the user can forqet that

time consists of two words, specifying time in convenient units.

The throe formats are as follows:

(1) <P>

(2) <p,q>

(3) <amount,:unit>

In the above formats, the characters "<", ">", ":", and "comma"

are required.

In the first format, "p" is used as a pointer to a two-word

time specified by the user. It is assumed that this "time" la

qiven in two consecutive locations, with the lower address word

containing the hiqn order bits of the time. The high order wnvd

will be accessed first (in case auto-increment mode is used).

There are two notable exceptions to this rule. Firr.t, if "n" is

of the format "svar", the system assumes a hiqh order word of

?.ero and a lower order word of the number "var". Second, if "p"

is auto-decrement mode, it is assumed that the first word

"popped" is tile higher order word, while the second word "popped"

is the Lower order word.

In the Becond TIME FORMAT, the user explicitly specifies

mm

t

! -14-

toth words of the ti.e. That is, "p" specifxes the higher order

word while V specifies the lower order word. Any assembler

addressing modes may be used for "n" ii _ n
anu a". The hiyher order

word will be accessed first.

The third TIME FORMAT allows the user to work with

conventional tine units. That is, if "unit" is JSEC, 1SLC, SLC,

KIM, or HR, then the user is snecLfyiny his tine in nicros.comis,

milliseconds, seconds, minutes, or hours, respectively. Here,

••mount- specific the tine to be converter, usim, any legal

assembler source addressing node. This third format shifts the

burden of generating a two word time to the system. if "amount-

is specified using the immediate addressing mode, tnis format is

as efficient (in execution time and space) as the first two

format«, since the conversion is done by the assembler itself.

However, if any other raode is used, the conversion must be done

at the expense of a larger physical program size and a longer

execution time for the statement.

example - meaning

<LOC> - the two words of time are in LOG and L0r+2
<»*«•> - the two words of time are: 000000 000012
^Rl|*> - access high order word first using mode (Rl)+

then access lower order word using mode (Kl)+

StJ 1 nn . ' tI10 tWO WOrdS 0f tlme are in U3 a^ R4 ^,»iuu.> - the two words are: 000002 000144
CR1,-(R3)> - the first word is in Rl and the second word

will be "popped" using R3
<#1U.,:MSLC> - the two words equivalent to 10 (decimal)

milli.seconds will be calculated by the
assembler

<AMOUMT,tMIN> - at execution time, the data located in
location "AMOUNT" is assumed to specify
minutes and will be converted to a two-word
time for the system.

t HHBMMMMHMHHi^MMlMMMMÜ

-15-

4. PROGKAn CONTROL STATEMEHTS

The purpose of this section is to describe some statcncnts

which help control the execution of a proqram.

4.1) PAUSE Statement

When writing tine dependent code a user nay wish to suspend

the execution of tnis code for a specified amount of time, ami

then have its execution resume. For example, consider someone

trying to balance an inverted pendulum who necus to know its rate

of fall. If anjle position is the only value the computer can

sample, then the rate of fall must be determined by takimj two

ancjle samples spaced in time. Thus, if the user samples the

antjle, nauses for a period of time, and tnon makes another angle

sample, he can approximate the rate of 1 ill by dividing the

difference between the samples by the amount of tine paused.

Tliis task can be accomplished with the PAUSE statement, whose

format is as follows:

PAUSE length

length - specifies the "length" of time the ^.ude will
remain idle before execution resumes. This
argument should be •pacified using TI IE FORMAT.

Phrased more precisely, "length" is the amount of time the

processor will iynore the code stream which e>'ocuted the PAUSE

statement. The PAUSE statement has one very important

restriction: '..hen it is executed, the 1^6 stack should be free of

—*-- ■

-16-

important information since that information will be destroyed

(see the section on STACKS).

4.2) WAX? Statement

The WAIV statement is a more 'jeneral means to subpenu

execution of a sequential program. It is snalar to a P.VW:,L in

that normal execution of code is susnenued. But while P;.L:;L

"pauses" for a specified amount of time, »VnlT "waits" antil BOfr.e

specified condition becomes tru«?. The followinq exai.ijle will

demonstrate the usefulness of the WAIT statement.

Suppose one is interested in controlling the temperature of

an oil bath. Using only a thermistor and a heater, a simple

control strategy involves turning tne heater on when the

temperature is too low, and turning the heater off when the

temperat'ire is too high. What fellows are three sample

programming approacnos to imolerent this generil strategy.

1) Create two daemons. Tae first uaer.on will recognize
when the temperature is too low, and then turn on tho
heater. The second daemon will recognize when the
temperature is too high, and turn off the heater. This
approach will work, but may cause the computer to
thrash. For example, as soon as the first daemon turns
the heater on, tue temperature will not change
noticeably. Thus, the daemon will again turn the
fleeter on (even though it was already on) .

2) Create one daemon that will recognize when the
temperature la outside an acceptable zone, when this
occurs, apply a procedure that turns the heater on i*
the temperature is low, or t rns it off if the
tonperature is high. Unfortu.n tely, this approach nay

mmmm

-17-

also cause thrashing«

3) Create one daemon that will recoynize When the
temperature is too low. When this occurs, apply the
followintj procedure: turn the heater on; wait until the
temperature gets too highi turn the heater off. euch a
daemon cannot thrash. It uses a WAIT statement whouu
condition recoqnizes when the ten[)erature is too .ii-;;i.
This approach requires that the heater ir. Initially off
when the daeinon is activated.

Example 3) above used a WAIT itatenent« The format of this

statement is as follows:

WAIT cond,rec-wi thin

cond - specifies the condition to be testeti, and uses the
same addres.'iinq modes is the "cond" argument of
the DAEMON statement.

rec-within - spocifiet the measure of continuity for the
WAIT condition. Its meaninn and format arc
similar to that of the daemon "recoqnize-within".

The code for tiie WAIT statement condition is sn.ilar to the

DAEMON'S condition« That is, tnere is no special entry format,

and it is terminated with an EUDCOUÜ statement. At that time KO

is tested for "true" or "false". If "false", tue condition will

get rescheduled for execution at a later tine. If "true",

execution will return to the instruction located physically after

the WAIT statement.

The "recognisee-within" tor the WAIT atatenent la comnlotcly

analogous to the "recognise-within" of the DÄn*K)N statement.

That is, it specifics the measure of continuity to be used for

tie WAIT condition. As before« the user can instruct the system

mm—m

-la-

to use a default for this value, by specifyimj the value zero.

Like PAUSL, execution of WAIT restricts the U6 Ctack to bü

empty. There is an additional restriction on the WAIT stater.ent,

in that conditions cannot be nested. Thus, neither daep.on

conditions nor other wait conditions inay execute a MAZ'i

stateuent. If such an attempt is made, program execution './ill

terminate. Thus, only daemon expressions and the main proqram

(see Section 6) may execute a WAIT statement.

-19-

5. Iia'UT/OLTPUT

The purpose of this section is to describe the I/O

statements of the Macro Control Language.

5.1) Teletype I/o

Any daemon can output to the teletype at ifiv tine. Howeveri

if more than one daemon outputs messages, they nay appear

intermixed at the console due to the scnedulinq process for the

daemons. The user must uo his owr. queuing for teletype use among

his own daemons. It is also recommended that large messages not

be output to the teletype. After the output buffer (50

characters) is full, the Delphi system puts the whole job into

I/O wait until at least 15 new characters will fit into the

buffer. The daemon scheduler does not know when such I/O waits

occur, and thus the response of the system may become sluggish.

Any daemon can input from the teletype at any time; again,

queueing must be done by the user. The scheduler does not know

when the user intends to do teletype input. An instruction such

as RBAOCH puts the system inLo I/O wait if there are no

characters in the buffer yet. Such I/O may degrade the system's

response. Thus, the user is advised to check for characters in

the input buffer before executing teletype input instructions.

Such checking may be done by using NUMCH or interrupts when input

appears in the buffer (See Delphi documentation).

-20-

^•2) KüJl World Input

Input fron tho physical process being controlleu is obtained

using the SENSE instruction. The format of this instruction la

as follows:

SENSE line,dest

line •- specifies the input port number whose value im to
be sampled. This argument uses the normal
assembler source addressing modes.

dest - specifies where the input value is to be put
Like all other "dest" arguments, this uses the
assembler destination addressing nodes.

This single statement is used regardless of what kmu of device

is connected to the specified input port. If the port has a

digital input, it will be read immediately. If the port has an

analog input going tiirough an A/0 converter, a value is still

read immediately. However, in the current hardware configuration

(September, 1973) the A/0 converter is being multiplexed with "n"

input ports (n=4). Thus, due to single convert times of

approximately GO microseconds, the data read will be somewhere

from zero to 60n microseconds old.

The system uses only the lower 5 bits of "line" as the port

address. Higher order bits will be ignored. Port zero is

reserved for the system's programmable clock. This clock may be

read by the curious user, but it cannot be set. In the current

interface, an input port consists of ten aata bits which will be

sannled upon command. ror eXanple, port #4 correspomis to ono of

muma^mmt—mmm^—mtm

-21-

the motor position sensors on the existing pendulun hardware.

This port is sharing an A/D converter with throe other input

ports. Sensing an unused port will return the value "zero",

list of legal input ports will be kept in JH-473.

5.3) Real World Output

Output to the real world is accoruplisheu with the HL'.lu

statement. The format of this statement is as follows:

SEND line^value

line - specifies tiie output port number to which "value"
is to be sent. As in the SENSE staterent, this
argument uses the assembler's source addressing
modes.

value - specifies the data to be sent to the specified
output nort. The format for this argument is
specified in the following BNP-like statement:

value:= data | <PALSL:, time> |

<rcount,<value(1)»value(2),. . . »value (n)>>

In the first option for "value", "data" specifies the actual

output data, using normal assembler source addressing modes. For

this case, the data is output to the appropriate port and control

is returned to the instruction following the SEND statement.

In the second option for "value", "time" specifies the

amount of tine that the SEND statement will "pause" before

control is returnea to the next instruction. The argument "time"

^-. —^M^—^—.,_ -. . — .. ■—■■nil

-22-

iu specified using TIME FORMAT. The effect of this state-.ont is

tne execution of a "PAUSE time" stateraent. No actual data ':et.s

sent to the output port.

The third option lets the user specify a striinj of output

values, "value(]),... »value(n)", to be output sequentially, and ■

repetition count, "rcount", governinq how many tines the striny

will be output. The argument "rcount" is normally specified

using the assembler's source addressing modes. If the count is

zero, the string will not be output. If the count is one, t!ie

string will be output once. Any argument of the string,

"value(i)", must be in the format of a legal "value". These

values will be output starting with value (1) and ending with

value(n). The effect is similar to that of execution of the

sequence:

SEND line, valued)
SEND line,value(2)

SEMD line,value(n)

If the count is two, after value(n) is output, the string will bo

repeated immediately with value (1) for a second pass. Thus, if

the count is "m", the string will be output m times. The

exception for the argument "rcount" is the option to repeat

"forever". This option is specified by putting the single

character "*" in place of the argument "rcount". Since the

definition of "value" is recursive, a repeated string of values

-23-

can be used for any "valued)». Nesting may be to any level,

provided of course that the source statement fits on one line.

It was mentioned that the effect of a "value" in this third

form was "similar" to the execution of a sequence of SLliD

Statement«. As far as the world can tell, the effect is the

same. However, there is a difference to the programmer.

Cxeouting a sequence of SEND statements will prohibit the

particular daemon from doing any other useful work. However,

tins tiiird output option actually create-, a "temporary output

daemon" for the specified line number. Once the tomnorary uaenon

is created and activated, control returns to the instruction

followiny the SEND statement. Tnus, useful work can be done

while a string of data is sent to a device. The daemon is called

"temporary" because once the repetition count has decremented to

zero, the daemon "disappears". This is important because only

one temporary daemon can exist for a given output line at a time.

Attempts to send two strings to tne same port simultaneously will

result in an error.

In the current interface, an output port consists of a

ten-bit data recjister. A port's register will be changed

whenever output is directed to that specific port. Currently,

port M is used to control the motors on the inverted pendulum.

A list of legal output ports will be kept in 38-473.

m^mmmmpmmimvi

-24-

6. PKOGRAM FORMAT

Tne purposa of this section is to explain the format for a

complete program with several daemons, and discuss a few related

statements.

6.1) Stacks

The PDP-11/45 is built around a stack orientation. All the

lacro Control Language statements use the main stack governed by

the stack pointer - register 6. For its use, the system reserves

stack space and sets up KG to point to this stack. Throughout

the execution of his program, the user is free to use this stack,

provided he obeys the following restrictions. First, he may not

specify any use of R6 in any Macro Control Language statement.

This restriction comes from the simple fact that the Macro

Control Language statements "push" items into the stack. Thus,

any specification using R6 will cause unknown errors. Second, he

must not have anything remaining in the stack at the time he

executes either a PAUSE, WAIT, ENDCONÜ, or EMUEXPR statement. At

these times, the stack pointed must point to the same location

that it pointed to upon entry to the daemon condition or

expression. All Macro Control Language statements obey this

discipline, and "pop" the stack when their execution is finished.

If the user forgets this restriction and leavers something in the

■tack while executing one of the above statements, unpredictable

effects will generally occur. The user is reminded that the JSK

■MBMM-an.

■ ■iiiJPWI^* " i ai-^ii -wv 1w|Han^-w—x i WM ■Hjuiipw^iiwiaiv^iia jpai.wm-.Bi ■PIPI tm^imwmm^m^^rmwmrnm^i ■K^IJ«N W»«*^^

-25-

instruction "pushes" onto R6' s stack. This itein nust be "poppoü"

before execution of one of the above statements.

The user may use stacks without any of the above

restrictions, provided that he reserves his own stack ünace and

uses one of the first six registers (0 thru 5) as a stack

pointer. He must initialize his stack pointer upon entry to Ilia

condition or expression. All sharinq of stack space by multiple

daemons must be managed by the user.

6.2) Starting a Program

Somewhere in his program, a user must include the following

statement:

START (stack)

stack - an optional argument specifying how much system
stack space should be reserved. The parentheses
are not part of the syntax, but are used to
signify that the argument is optional.

The START statement will be the first executable statement in the

user's program, regardless of its physical location. This

statement reserves space for the system stack governed by R6.

formally, lUO(octal) bytes are reserved for this stack. However,

the user may override this by specifying the argument "stack".

The DAEMON statement temporarily uses 20(octal) locations in the

stack. Thus, if more than 4 daemons could bo created at the same

■ ■ ■^l" <•' '

•26-

tirae, a stack overflow would result unless noie stack space were

reserved. üita ilarly, the user could specify less stack space.

The START statement initializes the system and defines the

label "STAKT". This statement belongs to the "MAIH" program, and

it creates a "daemoit", wich no condition, to represent this

"MAIN" body of executable code. The service-within tine for tiiis

"daemon" is infinity, making the code "low priority" compared to

real daemons. The START statement also initializes tiie

tiue-of-day to zero, and starts the system clock.

The statement located physically after the START statement

wil] be the second statement to be executed. If the user should

ever forget the START statement, address errors will occur on

".CONTRL", afl it will be an undefined symbol. If the START

statement is exeruted a second time (by branching to the label

"START") the system will reset itself to its original internal

state. That is, no daemons will exist and the time-of-day will

be reset to zero. Multiple-definition errors will occur if more

than one START statement exists per program.

6.3) Finishing a Program

Since the system treats the MAIN program as a daemon

expression, the Last executable statement (in time) of the MAIN

program should bo an ENDEXPR statement. The status of a running

■MBSeaHBWMMaMMMB.flMii.MaMMBM^teM.aitMMaMSM»

1 1 -Ml«! W. I ■»^OT ,W

-27-

I-IAIN program is deactivated; thus, after the LIJULXPi; stateliest is

executed, the MAIN program becomes "idle", and docs not affect

the execution of other daemons. The only way to re-activate the

nain program is to re-execute the STAi^T statement.

The last physical statement of a complete program is tne

FINISH statement, whose format is as follows:

FINISH (nuii)

num - is an optional argument specifying how many
daemons (ordinary and ter.horary) are to bo created
by the program.

The FINISH statement is a non-executable pseudo-op. It simnly

provides "clean-up" directives to the assembler and replaces the

normal ".END" pseudo-op. One of its tasks is to reserve space

for all the daemon structures to be created. The assembler

counts the number of JALMüN statements expanded, and adds to this

the number of "temporary daemon" expansions (see the SEND

statement). The FINISH statement then reserves space for this

total number of daemons, and for the main program. The user can

override this total by usinr the argument "num". This procedure

might be necessary if a single DAEMON statement is used to create

more than one daemon, or if a single SEND statement with option 3

for "value" is used for more than one output port.

If the UTer forgets to include a FINISH statement in his

program, an assembly error will result because the symbol

".FINISH" will be undefined.

■MfcHi^M—^^^MMMMMM

^^^PPF-v»

-28-

7. UUMMIMR PU()(^t/vfiS

The purpose of this section is to yuide the user throuun the

necessary steps to create, .issenble and execute a program in tiia

Macro Control Language. In this section the user in provided

with sanple command lines. In all the command lines shown,

underlined characters are typed by the computer, not bv the user.

Since DELPHI'S assembler does not have facilities for

macros, it is necessary to use DEC's I1ACR0 assembler provided

with their Disk Operating System (DOS). The user will never be

running pure DfS, since DELPHI provides a Virtual DOS sub-system,

^o use the MACRO assembler, the user must keep his text files on

the system's DOS disk.

7.1) DOS Directories

To use the Macro Control Language, the user must have

"write" access to DOS directory [40,<x>], where <x> is some

integer greater than one. This guide will refer to the directory

as [40,<x>], but the user should substitute his particular value

for <x> in all the commands shown (i.e., [40,3]). Items in a DOS

directory are of the form <filename).<extension>, where

<filename) is a unique one to six character name and <extension>

consists of one to three characters. The standard extensions

used by DOS are ".;1AC" for macro source files, " .BAK" for backup

source files, ".LST" for assomber listing files, ".OBJ" for

|aBHHaaHiMM|BaaMM||HaHgaM MMBaaaa||H|nia>>a||

1 mtwm\ti\w*^^u~^miem

-29-

object files, and ".LDA" for load files.

To deternine wliat files exist in his directory, the user

should give the Delphi command:

>list (40,<x>]

This command will list the names of all files in directory

[40,<x>]. Followimj each name will be the file length (in disk

sectors), and the creation date of the file.

To delete a particular file from his directory, the user

should give the Delphi command:

^delete <filename>.<extension>[4Ü,<x>]

This command will delete the file <filename>.<extension> from the

directory (40,<x>]. Since ".BAK" files are created after

editing, users are encouraged to delete all such files after use.

Similarly, all ".LST" files and ".ODJ" files should be deleted

after they are used. These files take disk space away from other

users. Thus, the user is warned that all ".BAK", ".LST", and

".OBJ" files may be periodically deleted by system programmers if

the user becomes negligent.

7.2) Editing

To assemble a program, a user's program text must consist of

tt^aumtummi^ti^t^t^nimmmmm^tmmMmmtmtm

-30-

upper case letters and must reside on the DOS disk with a ". 1AC"

extension in directory [40,<x>]. To create and/or edit such a

text file, use the Delphi command:

>_edit filename[40, <x>]

where "filename" is a unique one to six character name for tno

user's file. Editing is essentially the same as with tno normal

Delphi editor. The only difference is an automatic case

conversion of all characters entered from the console. That is

typing a lower case "a" enters an upper case "A", and vice versa.

This enables the user to enter upper case letters without using

the "SHIFT" key. As usual, ".BAK" files get created when

re-editing a file. However, the ".BAK" files on the DOS disk do

not get automatically deleted when the user logs out. Thus, if

the user has no interest in the old file, ho should execute the

command

^delete filename.bak[40,<x>]

to delete the file.

7.3) Assembling

To assemble his program, the user must use the MACRO

assembler in Virtual DOS. To use the assembler, first enter the

Delphi command:

mammtmmmmmmmmmmmm^^m^m**—e—mt*m^mmu^**mmm

I'"" "■ '

-31-

>dos

Once inside Virtual DOS, the systen will respond with a ";"

wlionever it is at üOS command level (instead of the ">" usou at

Delphi connand level). The user should noce that DOS vnll echo

lower case characters as upper case. The first DOS coruiand

shoulti be:

$LO 4 0 <x>

This command specifies the user v/ishos to work in directory

[40,<x>]. The next DOS commam' to be used calls the MACRO

assembler:

$:iACRO (or £■!)

The assembler then types out its current version number, and

responds with a "#". This character signifies that the assembler

wants a command line. A typical command line would be as

follows:

£f ilename<CTRLMl[40,1],filename

This assembles the user's file, filename.MAC, with the system's

macro file, CTRLM1.MAC(40,1], and creates an output file,

filename.OBJ, to be used by the LINK Editor. If any assembly

errors occur, they will be typed on the console. The user can

abort an assembly by entering "CONTROL D", and the system will

return to DOS command level. Otherwise, the assembler will

 - - I ■■ • II—■■■!

-32-

respond with another "J," when finished. To exit fror, tau

assembler at this tine, first enter "CONTKOL B", and then "LlUIi

FLED". This sequence will return the user to DOS connand level,

To exit from Virtual DOS, enter the foj-lowiny command while at

DOS command level:

$QUIT (or $Q)

This will return the user back to Delphi command level.

If the user is only interested in a source list;'nq and

symbol table, he should use the MACRO directive

#,filename<CTRLMl[40,1],filename

This will create the file "filename.LST" wnich contains the

program listing and symbol table. To list this file, the user

should use the Delphi command:

>_p Anh filename[40,<x>]

After getting his listing, the user should delete this listing

file. To obtain only a symbol table, use the directive

£, filename/NIXCTRLMl[40,1],filename

The "/NL" option will not list the source program. To obtain

both object and listing files, use:

^filename,filename <CTRLM1[40,1],filename

■I

^^vmtmmnmvmm^^m**'« ' im> wmmvmimBmmmmmmmmmminm^mBmBimmi^mi^BB-^^^imi^^Twmmrimmimrr^mmmmmiam

-33-

For other listing options, see the documentation on the D >:: ACWi

assembler.

7.4) Link Lditi nc.

Once a user has obtained an error-free object file, 10 i-,

ready to use the link editor. The link editor is called by

giving the following corunand while at DOS command level:

SLINK (or $L)

This can be done after leaving the MACRO assembler, or after

re-entering DOS and giving the "LO" command. After LINK is

called, it responds with its current version number and then a

"#", as did flACRO. The only command the user should give to LINK

is as follows:

£f ilename<filename,CTRL01(40,1]/D:0/U/E

This will create a file "filename.LUA" which can be executed at a

later time. If any errors occur, the user has not followed all

the directions up to this point. Normally, only a transfer

address, low limit, and high limit will be typed on the console

by LINK. After LINK gives a new ■#•, exit to DOS command level

by giving the "CONTROL B", "LINE FELD" sequence as in :1ACR0. The

user should then return to Delphi conuand level by giving the "Q"

command.

■■ tmm

" " " m 'ma •*—^m^mm^*~m •<— i tKm^Fm^^mmimm'mmfrmm^m-^

-34-

7.5) Lxecuting a Program

Once a ".LDA" file has been created, it can be executed by

H, as a normal Delphi program. To specify the ".LDA" file, enter

the command:

>m filename[40,<x>]

Once inside M, the first command should be "a". This will attach

the sensors and actuators to the user's process, lochimj out

other users. Then after the "a" command, enter the "g" command

and the program will start executing the START statement. If a

program terminates normally, an "END OF JOB" message will be

given.

If the user wishes to set breakpoints in his program, at

least one must be set before starting his program. When the

START statement is executed, the system checks whether or not any

breakpoints are set. If none are set at that tine, the system

will prevent tracing from occurring, even if breakpoints are set

at some later time. If one or more breakpoints are set when the

START statement is executed, then the system will trace all user

code, even if breakpoints are reset at some later time. The user

should be warned that tracing slows the execution time of a

program and may affect time-dependent code.

' •' ' «immwm m

-35-

8. SAMPLE PROGRAM

Tliis concludes the user's guide to the 'lacro Control

Language. The following is a simplified sample program to

balance an inverted pendulum.

Assume that the problem can be split in two. That iii, the

"x" and "y" axes can be controlled inüepenuently. In the code

that follows, the :1AIN program creates all uaenons, waits for the

operator to press a "start-button", and then activates the axis

daemons. It also activates a "DIFF" daemon which finds the

angular velocities of the pendulum. The axis daemons use routine

"CHECK" to determine if the absolute value of the angle is less

than two degrees. If correction is necessary, these daemons use

routine "FIX" to control the motors. The code supplied is

simplified so that the reader can see a sample Macro Control

Language program, without being bored by the details of balancing

a pendulum.

.•DEFINITIONS

XANGLE=14
yANGLE=3

XP0SITI0N=4
YPOSITION=7

XMOTOH=4
Y:IOTOR=1

BUTTON»!

;SENSOR PORT # FOR THE "X" ANGLE
;SENSOR PORT # FOR THE "Y" ANGLE

;SENSOR PORT # FOR THE "X" POSITION
;SENSOR PORT # FOR THE "Y" POSITION

;ACTUATOR PORT # FOR THE "X" MOTOR
;ACTUATOR PORT # FOR THE "Y" MOTOR

;SENSOR PORT # FOR THE "START" BUTTON

■MM! mmmm

-36-

rHAXN PROGRAM
START

;CR£ATL "A" ANÜ "Y" DAEMONS

DAEMON XDAEMOU,#XCOND,#XEXPR,<#5,:MSL.C>,<no
DAEMON yDAEMON,#YCOND,#YEXPR,<#5,:MSl:C>,<#10*

;CREATE AND ACTIVATE DAEMON TO FIND FALLING RATUS

IMSEC)
:M3JJC>

;WAIT FOR

»•ACTIVATE

;END MAIN

DAEMON
ACTIVATE
OPERATOR
WAIT
DAEMONS
ACTIVATE
ACTIVATE
PROGRAM
LNDEXPR

DIPP9«COII01#«EXPRlv<n#iN8CC>v<tS»iMSLC> DIFF
TO PRESS START BUTTON
#WCOND,<#l,:SEC>

XDAEMON
YDAEMON

;WAIT CONDITION
WCOND: SENSE #BUTTON,RO

TST RO
BEQ \;FALSE
ENDCOND

WFALSE: MOV #-l,R0
ENDCOND

;RETURN "TRUE"

;RETURN "FALSE"

;CONDITION FOR DIFF
CONDI: CLR RO

ENDCOND
;SET "TRUE*

»•EXPRESSION FOR DIFF
EXPRli SENSE

SENSE
PAUSE
SENSE
SENSE
SUB
DIV
MOV
SUB
DIV
MOV
PAUSE
ENDEXPR

#XANGLE,XTEMP ;GET VALUES
#YANGLE,YTEMP
<T,:USEC> ;PAUSE
#XANGLE,R1 ;GET VALUES
#YANGLE,R3
XTEMP,R1 ;CALCULATE DII
R0,T
R0,XDIFF
YTEMP#R3
R2,T
R2,YDIFF
<T,:USEC> ;DON'T THRASH

;CONDITION FOR
YCOND: MOV

JMP

YDAEMON
#YANGLE,R1
CHECK

—■— " ■ ■^-

-37-

;CO;JI)ITI(;rJ FOR XDAEMON
XCONO: ! 10V IXAM6LB, Rl

JUT1 CliLCK

lEXPRESSIOtJ FOR XDAEMON
XEXPRi "lOV #XANr;LL:,Rl

.1()V EXPOSITION, R2
MOV #XMOTOR,R3
JMP FIX ;GO TO FIX ElOUTIIiL

EXPRESSION FOR YDAEMON
YEXPR: MOV #YANGLE,R1

MOV 4YPOSITION,R2
MOV «JYMOTOR,RJ
JMP FIX ;C,0 TO FIX ROUTINE

1CHECK ROI rriNE
CHL<JK: SENSE K1,R0

TST RO
BPL 1$
NEC RO

1$: SUB #2,R0
ENDCOND

;GET AJGLE

;TAKE ABSOLUTE VALUE

.•CONDITION "FALSE" IF RO NEGATIVE

;FIX ROUTINE
FIX: SENSE R1,R0

SENSE R2#R4
»•CALCULATE MOTOR RESPONSE

;GET ANGLE
;GET POSITION

»•CONTROL MOTOR
SEND R3,R5 ;R5 HAS CONTROL VALUE
PAUSE <#200.,:USEC>
ENDEXPR

.•DAEMON "NAMES"
XDAEMON: .WORD 0
YDAEMON: .WORD 0
UlFF: .WORD Ü

.•STORAGE LOCATIONS
XTEMP: .WORD 0

^^^^HMw^ufe*

YTKMP: . WORD 0
XDIFF: .WORD 0
YÜIFF: . WORD 0

;PAUSE TIME FOR DIFF
T: .WORD 500,

-38-

FINIS11 ;END PROGRAM

M mmmmm

